
J Stat Phys (2008) 132: 921–935
DOI 10.1007/s10955-008-9576-1

Typicality of Pure States Randomly Sampled According
to the Gaussian Adjusted Projected Measure

Peter Reimann

Received: 18 January 2008 / Accepted: 29 May 2008 / Published online: 25 June 2008
© Springer Science+Business Media, LLC 2008

Abstract Consider a mixed quantum mechanical state, describing a statistical ensemble
in terms of an arbitrary density operator ρ of low purity, trρ2 � 1, and yielding the en-
semble averaged expectation value tr(ρA) for any observable A. Assuming that the given
statistical ensemble ρ is generated by randomly sampling pure states |ψ〉 according to the
corresponding so-called Gaussian adjusted projected measure (Goldstein et al. in J. Stat.
Phys. 125:1197, 2006), the expectation value 〈ψ |A|ψ〉 is shown to be extremely close to the
ensemble average tr(ρA) for the overwhelming majority of pure states |ψ〉 and any exper-
imentally realistic observable A. In particular, such a ‘typicality’ property holds whenever
the Hilbert space H of the system contains a high dimensional subspace H+ ⊂ H with the
property that all |ψ〉 ∈ H+ are realized with equal probability and all other |ψ〉 ∈ H are
excluded.

Keywords Quantum statistical mechanics · Quantum ensemble theory · Gaussian
measures · Microcanonical density matrices

1 Introduction

Spheres in high dimensional Euclidean spaces exhibit astonishing geometrical properties,
as discussed in detail e.g. in basic Statistical Physics lectures: two randomly drawn vectors,
each connecting the center of the sphere with any point at its surface, are practically orthog-
onal with extremely high probability; almost the entire volume of the sphere is contained
within an extremely thin surface layer of the sphere; the latter in turn exhibits an extreme
concentration of its volume around a very narrow ‘equatorial belt’, and so on. In quantum
mechanics, pure states live on unit spheres in Hilbert spaces of usually very high dimension,
and hence one naturally may wonder about their corresponding peculiarities. One of them is
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the subject of our present paper. Namely, we will show the following main result: Consider
a mixed state, describing a statistical ensemble in terms of a density operator ρ with low
purity, trρ2 � 1, meaning that the mixed state is very ‘far’ from resembling any pure state.
Yet, the statistical ensemble ρ can be thought of as arising by randomly sampling pure states
|ψ〉 according to some probability distribution. In fact, it is well known (see Sect. 2 for more
details), that there are many different probability distributions of pure states |ψ〉 which give
rise to the same mixed state ρ. Here we show that for any given ρ of low purity there exists at
least one such probability distribution with the following quite astonishing property: Given
an observable A, the expectation value 〈ψ |A|ψ〉 for the overwhelming majority of pure
states |ψ〉 is extremely close to the ensemble averaged expectation value tr(ρA) compared
to the full range of a priori possible expectation values max|ψ〉〈ψ |A|ψ〉 − min|ψ〉〈ψ |A|ψ〉
(the latter difference is tacitly assumed to be finite, as is the case for any experimentally
realistic observable A, see Sect. 3).

For this kind of property, the term ‘typicality’ has been coined in [1]. While such ‘typ-
icality’ results are applicable in principle to general quantum mechanical systems, they are
obviously of particular interest with respect to the foundation of statistical physics of macro-
scopic systems at equilibrium, as discussed in detail e.g. in [1–9]. Further related works
include [10–17]. With our present study we extend previous results from [1, 2, 4–9] to yet
another important class of probability distributions of the pure states |ψ〉, namely the so-
called Gaussian adjusted projected measure (GAP), recently introduced in [4].

2 Outline of the Problem

We consider a quantum mechanical system with (separable) Hilbert space H of dimension
N ≤ ∞. The system is assumed to be in a mixed state (statistical ensemble) described by
a density matrix ρ. Let {|n〉}N

n=1 be an orthonormal basis of eigenvectors of ρ and pn the
corresponding eigenvalues,

ρ =
N∑

n=1

pn|n〉〈n| (1)

with the usual properties

pn ≥ 0 (2)

N∑

n=1

pn = 1. (3)

In the context of equilibrium statistical mechanics, |n〉 will usually be the eigenstates of the
system Hamiltonian, but we will not make use of such a property anywhere in this paper.
A particularly simple and important example is the microcanonical density operator with

ρmic = 1

N+

∑

n∈S

|n〉〈n| (4)

or, equivalently, with

pn = 1/N+ if n ∈ S, pn = 0 if n 
∈ S, (5)

where S is a subset of {1, . . . ,N}, consisting of N+ elements (1 ≤ N+ ≤ N).
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Given a density matrix of the general form (1)–(3), an arbitrary, normalized pure state
(e.g. a wave function) can be written in the form

|ψ〉 =
N∑

n=1

zn|n〉 (6)

where zn := 〈n|ψ〉 are complex coefficients, satisfying the normalization condition

‖z‖ = 1 (7)

with the standard definitions

z := (z1, z2, . . . , zN) (8)

‖z‖ :=
(

N∑

n=1

|zn|2
)1/2

. (9)

Next, we assume that the statistical ensemble ρ is generated by randomly sampling pure
states (6) according to some probability density p(z). The corresponding ensemble average
of an arbitrary function f (z) is denoted by

f (z) :=
∫

dzf (z)p(z), (10)

where dz represents the natural, uniform measure for the N -dimensional complex argu-
ment z,

dz :=
N∏

n=1

d(Rezn)d(Imzn). (11)

For infinite dimensional systems, well defined limits N → ∞ are tacitly taken for granted
in (10) and in similar expressions later on.

Put differently, by averaging pure states (6), represented as projectors |ψ〉〈ψ |, according
to the probability density p(z), the given statistical ensemble ρ has to be reproduced, i.e.

|ψ〉〈ψ | =
N∑

m,n=1

z∗
mzn |n〉〈m| =

N∑

n=1

pn |n〉〈n| = ρ (12)

where the star indicates complex conjugation and where we exploited (1) in the last iden-
tity. Hence, the second moments of the distribution p(z) are fixed by the given statistical
ensemble ρ via

z∗
mzn = δmnpn. (13)

In turn, every p(z) with second moments (13) reproduces the given ρ in (12). We thus re-
cover the well known fact that a given density matrix ρ does not uniquely fix the distribution
of pure states p(z). For more details, explicit examples, and further references see e.g. [4].

Next we consider an arbitrary observable A = A† : H → H with eigenvectors |ν〉 and
eigenvalues aν , i.e.

A =
N∑

ν=1

aν |ν〉〈ν|. (14)
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Here and in the following we use the convention that Greek labels ν and μ implicitly refer to
the eigenvectors of A, which is convenient but somewhat ambiguous in so far as, e.g., |ν = 3〉
is not the same vector as |n = 3〉. According to (1), the ensemble averaged expectation value
of A is given by

〈A〉 := tr(ρA) =
N∑

n=1

pnAnn (15)

Amn := 〈m|A|n〉. (16)

Further, any given pure state |ψ〉 gives rise to an expectation value 〈ψ |A|ψ〉 ∈ R. The ran-
dom distribution of those expectation values, induced by the distribution p(z) of pure states,
is the quantity of central interest in our present work. In particular, we will be interested in
identifying conditions under which the expectation values 〈ψ |A|ψ〉 will be very close to the
ensemble average (15) with very high probability, i.e. for a large majority of pure states |ψ〉.

3 Relevant Hilbert Space and Observables

Without loss of generality, we assume that the indices n in (1) are ordered so that

pn > 0 for n ≤ N+ and pn = 0 for n > N+ (17)

for some integer N+ with 1 ≤ N+ ≤ N . The N+-dimensional sub Hilbert space spanned by
the basis vectors {|n〉}N+

n=1 is denoted by H+ and the projector onto this subspace by

P+ :=
N+∑

n=1

|n〉〈n|. (18)

In particular, P+ is at the same time the identity operator on H+ and the microcanonical
density operator (4) takes the form

ρmic = P+/N+. (19)

From (13) and (17) we conclude [4] that (with probability one) zn = 0 for n > N+ and
hence |ψ〉 ∈ H+ according to (6). As pointed out in Sect. 2, our main goal is to determine
the probability distribution of the expectation values 〈ψ |A|ψ〉. It follows that with respect
to this goal only the restriction/projection

A+ := P+AP+ (20)

of the observable A to the subspace H+ is relevant. Equivalently, whenever m or n exceeds
N+ then the matrix element Amn is of no relevance for our purpose and thus can be set to
zero without loss of generality.

The full range of possible expectation values 〈ψ |A|ψ〉 is quantified by

�A := max
|ψ〉∈H+

〈ψ |A+|ψ〉 − min
|ψ〉∈H+

〈ψ |A+|ψ〉

= max
|ψ〉∈H+

〈ψ |A|ψ〉 − min|ψ〉∈H+
〈ψ |A|ψ〉

≤ max
|ψ〉∈H

〈ψ |A|ψ〉 − min
|ψ〉∈H

〈ψ |A|ψ〉. (21)
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The second relation follows from (20) and the fact that P+ is the projector onto the subspace
H+ and the last relation from the fact that H+ ⊂ H. Alternatively, �A can thus be identified
with the difference between the largest and the smallest eigenvalues of A+ and is bounded
from above by the difference between the largest and the smallest eigenvalues of A, cf. (14).

Clearly, any given real experimental apparatus has a finite range and hence the corre-
sponding range of possible expectation values �A from (21) is finite. This range is specific
to the given measurement device, but is (practically) independent of the properties (e.g. the
size) of the observed system. Here and in the following we restrict ourselves to observables
A in the above sense. For instance, the energy of a harmonic oscillator is not an observable in
this sense: in principle, the energy of the oscillator may become arbitrarily large (albeit with
extremely small probability), but no real device would be able to display its value beyond a
certain upper limit. Rather, all energies beyond this limit will yield one and the same mea-
surement result (e.g. a blow up of the device), and hence only the corresponding ‘truncated’
energy operator would be an admissible ‘observable’.

We emphasize again that the above restriction regarding the admissible observables A

is of a purely mathematical/formal nature, it does not exclude any relevant observable cor-
responding to a realistic physical measurement. Indeed, it is well known that any realistic
observable can be built up by means of suitable projection operators, and each such projector
P only has eigenvalues zero and unity and hence �P = 1. Essentially, the same ‘restriction’
in fact also applies to the seminal prior works [1, 2, 9]. The measure of distance employed
in [2] is the trace-norm, involving a maximization over all operators with operator norm
bounded by unity. Hence, the estimates from [2] become worse and worse, as the maximally
admissible norm of the considered operators increases. Similar conclusions apply for the
estimates from [1]. The most explicit discussion of this issue is contained in [9].

To summarize, only the sub Hilbert space H+ and the projected observables (20) are of
relevance for our purpose. Accordingly, we can and will for simplicity assume in some of the
following sections temporarily that H = H+ and thus A = A+. In other words, all subscripts
‘+’ will be omitted and it will be taken for granted that pn > 0 for all n. Furthermore, we
can and will focus on observables of finite range �A according to (21).

4 The Gaussian Adjusted Projected Measure (GAP)

To avoid unnecessary technical complications, we temporarily restrict ourselves to finite
dimensions N . In the final results of our calculations, the limit N → ∞ can be readily
performed. Furthermore, we assume pn > 0 for all n without loss of generality, see end of
Sect. 3.

Taking for granted the above assumptions that N < ∞ and pn > 0, we define

p(z) :=
∫

dyN exp

(
−

N∑

n=1

|yn|2
pn

)
‖y‖2δ(z − y/‖y||). (22)

Here, dy is defined like in (11), i.e. we are dealing with an integral over 2N real integra-
tion variables, and N := ∏N

n=1(πpn)
−1 is a normalization constant (see below). The delta-

function is by definition understood in such a way that the ensemble average of an arbitrary
function f (z) from (10) takes the form

f (z) =
∫

dyN exp

(
−

N∑

n=1

|yn|2
pn

)
‖y‖2f (y/‖y||) (23)
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Equation (22) defines the Gaussian adjusted projected (GAP) measure [4] associated with
the density matrix (1), written in the form of a probability density p(z) with respect to the
natural measure (11). The word ‘Gaussian’ in the notion GAP refers [4] to the exponential
factor in (22); the word ‘adjusted’ refers to the factor ‖y‖2, which is needed to fulfill condi-
tion (12) (see below); the word ‘projected’ refers to the delta-function in (22), guaranteeing
the normalization condition (7) (see below).

In the special case of a microcanonical density operator we have pn = 1/N for all n

according to (5) and our assumption at the beginning of this section, yielding with (23) the
result

f (z) =
∫

dyN e−‖y‖2N‖y‖2f (y/‖y‖). (24)

It follows that f (Uz) = f (z) for arbitrary unitary N × N matrices U . Since also f (z) is
arbitrary, we recover the fact [4] that two arguments z with equal length ‖z‖ are realized
with equal probability.

Returning to the general case, it is often convenient to change from a Cartesian represen-
tation of the complex numbers yn in terms of real and imaginary parts (cf. (11)) to a polar
representation in terms of rn ≥ 0 and ϕn ∈ [0,2π) via the usual relation yn = rne

iϕn . Then,
the ensemble average of an arbitrary function f (z) from (23) can be rewritten as

f (z) =
[

N∏

n=1

∫ ∞

0
drn

∫ 2π

0
dϕn

rn

πpn

e−r2
n/pn

]
‖r‖2f (c) (25)

cn := rne
iϕn/‖r‖. (26)

We first consider the special choice f (z) := 1, implying with (10) and (25) that

∫
dzp(z) =

[
N∏

l=1

∫ ∞

0
drl

∫ 2π

0
dϕl

rl

πpl

e−r2
l
/pl

]
N∑

n=1

r2
n . (27)

The N integrals over ϕl are trivial, each yielding a factor 2π . Hence, we can infer that

∫
dzp(z) =

N∑

n=1

N∏

l=1

∫ ∞

0
drl

2r
1+2δln
l

pl

e−r2
l
/pl . (28)

The integrals over rl for l 
= n are of the form

∫ ∞

0
drl

2rl

pl

e−r2
l
/pl =

∫ ∞

0
drl

(
− d

drl

)
e−r2

l
/pl = 1. (29)

Likewise, the integral over rl for l = n is of the form

∫ ∞

0
drl

2r3
l

pl

e−r2
l
/pl =

∫ ∞

0
drlr

2
l

(
− d

drl

)
e−r2

l
/pl =

∫ ∞

0
drl2rle

−r2
l
/pl = pl (30)

where the second identity follows by a partial integration and the last identity by means of
(29). All in all, the right hand side of (27) thus amounts to

∑N

n=1 pn and with (3) we see that
p(z) is normalized to unity. Observing that the right hand side in (22) is non-negative for
any z, we can conclude that p(z) is indeed a well-defined probability density.
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Next, we consider the special choice f (z) := δ(X − ∑N

n=1 |zn|2) for an arbitrary real
number X. According to (26), the argument f (c) in (25) takes the form δ(X − 1) and thus
can be brought in front of all the integrals. The remaining integral is identical to the one
evaluated in the preceding paragraph, i.e. its value is unity, and hence f (z) = δ(X − 1). It
follows that p(z) indeed takes non-zero values only for arguments z respecting the normal-
ization condition (7).

Finally, we consider the special choice f (z) := z∗
mzn. Exploiting (25) we obtain

z∗
mzn =

[
N∏

l=1

∫ ∞

0
drl

∫ 2π

0
dϕl

rl

πpl

e−r2
l
/pl

]
rmrne

i(−ϕm+ϕn). (31)

If m 
= n, the integral over ϕn can be carried out first, being proportional to
∫ 2π

0 dϕne
iϕn =

0. Hence z∗
mzn = 0 if m 
= n. In the case m = n we have ei(−ϕm+ϕn) = 1 and we are left

with N independent integrals of the form
∫ 2π

0 dϕ = 2π . The remaining integrals over rl

are of the same type as those already encountered in (29) and (30) yielding the final result
z∗
mzn = pn. All together we thus find that the GAP measure (22) indeed fulfills the condition

(13) and hence reproduces the correct statistical ensemble (12) encoded by the preset density
operator ρ from (1). Without the ‘adjusting factor’ ‖y‖2 in (22) this property could not be
maintained [4].

5 Evaluation of the Variance

As pointed out in Sect. 2, our main goal is to determine the probability distribution of the
expectation values 〈ψ |A|ψ〉 induced by the distribution p(z) of pure states according to
the GAP measure (22). For the first moment, 〈ψ |A|ψ〉, the expected result 〈A〉 is readily
recovered by means of (12) and (15):

〈ψ |A|ψ〉 = tr(|ψ〉〈ψ |A) = tr(|ψ〉〈ψ |A) = tr(ρA) =
N∑

n=1

pnAnn = 〈A〉. (32)

In the present Section, our focus is on the variance

σ 2
A := [〈ψ |A|ψ〉 − 〈A〉]2 = 〈ψ |A|ψ〉2 − 〈ψ |A|ψ〉2

. (33)

We emphasize, that this variance characterizes the dispersion of the expectation value of A

for different pure states |ψ〉, and not the “quantum fluctuations” associated with individual
measurements of A of a fixed pure state |ψ〉.

Observing that the two observables A and A − 〈A〉 have the same variance and the same
range �A according to (21), we can and will restrict ourselves in this section without loss of
generality to observables A with the property

N∑

n=1

pnAnn = 〈A〉 = 0. (34)

Furthermore, we maintain the assumptions N < ∞ and pn > 0 for all n, as introduced at the
beginning of the previous Section. In particular, we thus have A = A+ and both the eigen-
values aν (cf. (14)) and the diagonal matrix elements Ann (cf. (16)) are bounded from above



928 P. Reimann

by amax := max|ψ〉∈H〈ψ |A|ψ〉 = maxν aν and from below by amin := min|ψ〉∈H〈ψ |A|ψ〉 =
minν aν . In view of (34) it follows that amax ≥ 0 and amin ≤ 0 and hence with (21) that

|Ann|, |aν | ≤ �A for all n, ν. (35)

With (6) and (34), the variance (33) takes the form

σ 2
A =

[∑

m,n

z∗
mznAmn

]2

=
N∑

j,k=1

N∑

m,n=1

AjkAmnz
∗
j zkz∗

mzn (36)

The average in the last term can be rewritten by means of (25) as

z∗
j zkz∗

mzn =
[

N∏

l=1

∫ ∞

0
drl

∫ 2π

0
dϕl

rl

πpl

e−r2
l
/pl

]
rj rkrmrne

i(−ϕj +ϕk−ϕm+ϕn)

‖r‖2
. (37)

The evaluation of these integrals is analogous but somewhat more involved than those from
the preceding Section: The integrals over the angles ϕl can be readily performed, yielding a
factor of (2π)N in the two cases (i) j = k and m = n, (ii) j = n and k = m, and zero in any
other case. Taking care not to count the case j = k = m = n twice and after a convenient
renaming of the summation indices we thus obtain

σ 2
A =

∑

m
=n

[AmmAnn + AmnAnm]Imn +
∑

n

[Ann]2Inn (38)

Imn :=
[

N∏

l=1

∫ ∞

0
drl

2rl

pl

e−r2
l
/pl

]
r2
mr2

n

‖r‖2
. (39)

In order to evaluate the integral Imn, we consider the auxiliary function

h(x,y) :=
[

N∏

l=1

∫ ∞

0
drl

2rl

pl

]
exp

{
−

N∑

l=1

(x + yl)r
2
l

}
, (40)

where x ≥ 0, y := (y1, . . . , yN), and yn > 0 for all n. Observing that the right hand side in
(40) factorizes into N independent integrals of the form

∫ ∞
0 drlrle

−br2
l = 1/2b with b :=

x + yl > 0 (see also (29)), we obtain

h(x,y) =
N∏

l=1

1

pl

1

x + yl

. (41)

Next, we note that the integral over the x-dependent terms in (40) is of the form∫ ∞
0 dxe−x‖r‖2 = 1/‖r‖2 (see (9)), implying that

H(y) :=
∫ ∞

0
dx h(x,y) =

[
N∏

l=1

∫ ∞

0
drl

2rl

pl

]
exp

{
−

N∑

l=1

ylr
2
l

}
/‖r‖2. (42)

By comparison with (39) we can conclude that

Imn = ∂2H(y)

∂ym∂yn

∣∣∣∣
yl=1/pl

. (43)
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By combining (41)–(43) it follows that

Imn =
∫ ∞

0
dx

∂2

∂ym∂yn

N∏

l=1

1

pl

1

x + yl

∣∣∣∣∣
yl=1/pl

= pmpn(1 + δmn)Kmn (44)

Kmn :=
∫ ∞

0
dx gmn(x)G(x) (45)

gnm(x) := (1 + xpm)−1(1 + xpn)
−1 (46)

G(x) :=
N∏

l=1

(1 + xpl)
−1. (47)

Finally, this yields for the variance (38) the result

σ 2
A =

N∑

m,n=1

[AmmAnn + AmnAnm]pmpnKmn. (48)

Next we turn to a more detailed discussion of the integrals Kmn in (45). Clearly, the
integrand is a positive function of x, bounded from above by unity, and decaying like 1/xN+2

for large x due to our assumption that pn > 0 for all n, see below (34). Hence the integrals
Kmn are finite and positive. Specifically, for the microcanonical density operator we have
pn = 1/N for all n according to (5) and our assumption below (34), yielding with (45) the
exact result

Kmn =
∫ ∞

0
dx(1 + x/N)−N−2 = N

N + 1
. (49)

To further evaluate Kmn in the general case, we rewrite gmn(x) from (46) by means of
Taylor’s theorem [19] as

gmn(x) = gmn(0) + xg′
mn(0) + x2

2
g′′

mn(xθmn(x))

= 1 − x(pm + pn) + x2(p2
m + pmpn + p2

n)χmn(x) (50)

for certain functions θmn(x) and χmn(x), satisfying θmn(x), χmn(x) ∈ [0,1] for all x ≥ 0, but
for the rest depending in a non-trivial manner on x, m, and n. Note that while an infinite
power series expansion would not converge for arbitrary x ≥ 0, the above finite order Taylor
expansion is an exact identity [19] for all x ≥ 0. As a consequence, (45) can be rewritten as

Kmn = K(0) − (pm + pn)K
(1) + 2(p2

m + pmpn + p2
n)κmnK

(2) (51)

K(k) := 1

k!
∫ ∞

0
dx xkG(x), k = 0,1,2 (52)

κmn ∈ [0,1]. (53)

From (47) and pn > 0 for all n we can infer that the integrals in (52) are finite (and positive)
if and only if

N ≥ 4. (54)
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The latter condition is tacitly taken for granted henceforth.
Next we return to the variance in (48). In view of (34) we see that sums of the form

N∑

m,n=1

AmmAnnpmpnQmn =
N∑

m=1

Ammpm

N∑

n=1

AnnpnQmn (55)

are zero if the coefficients Qmn are either independent of m or independent of n. Hence the
first sum on the right hand side of (48) vanishes in the special case (49) corresponding to the
microcanonical density operator. Likewise, in the general case we can conclude with (51)
that the first sum on the right hand side of (48) takes the form

N∑

m,n=1

AmmAnnpmpnKmn = 2K(2)

N∑

m,n=1

AmmAnnpmpn(p
2
m + pmpn + p2

n)κmn, (56)

yielding with (53) and K(2) ≥ 0 the estimate

∣∣∣∣∣

N∑

m,n=1

AmmAnnpmpnKmn

∣∣∣∣∣ ≤ 2K(2)

N∑

m,n=1

|Amm||Ann|(2pmp3
n + p2

mp2
n). (57)

With (3) and (35) we obtain

N∑

m,n=1

AmmAnnpmpnKmn ≤ 2K(2)�2
A

(
2

N∑

n=1

p3
n +

[
N∑

n=1

p2
n

]2)
. (58)

Turning to the second sum on the right hand side of (48), we note that

0 ≤
N∑

m,n=1

AmnAnmpmpnKmn ≤ K(0)

N∑

m,n=1

AmnAnmpmpn. (59)

The first inequality follows from the fact that AmnAnm = |Amn|2 ≥ 0, pmpn ≥ 0, and
Kmn ≥ 0 for all m, n. The second inequality follows from gmn(x) ≤ 1 according to (46),
hence Kmn ≤ K(0) according to (45) and (52). By means of (1) and (16) one readily finds
that

tr(ρA)2 =
N∑

m=1

〈m|ρA

N∑

n=1

|n〉〈n|ρA|m〉 =
N∑

m,n=1

pm〈m|A|n〉pn〈n|A|m〉

=
N∑

m,n=1

pmpnAmnAnm. (60)

Likewise, by using the eigenvectors |ν〉 and eigenvalues aν of A from (14) to evaluate the
trace one obtains

tr(ρA)2 =
N∑

μ=1

〈μ|ρA

N∑

ν=1

|ν〉〈ν|ρA|μ〉 =
N∑

μ,ν=1

〈μ|ρ|ν〉aν〈ν|ρ|μ〉aμ =
N∑

μ,ν=1

aμaνρμνρνμ.

(61)
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Combining (59)–(61) and ρμνρνμ = |ρμν |2 yields

N∑

m,n=1

AmnAmnpmpnKmn ≤ K(0)

N∑

μ,ν=1

aνaμ|ρμν |2 ≤ K(0)�2
A

N∑

μ,ν=1

|ρμν |2 = K(0)�2
A trρ2, (62)

where the second inequality follows from (35) and the last equality from (61) with A = 1.
In the special of a microcanonical density operator (4) we have seen below (55) that the

first sum on the right hand side of (48) vanishes. Exploiting (49), (60), and the fact that
pn = 1/N for all n we obtain

σ 2
A = N

N + 1
tr(ρmicA)2 = trA2

N(N + 1)
=

∑N

ν=1 a2
ν

N2

[
1 +O

(
1

N

)]
, (63)

where aν are the eigenvalues of A, see (14).
Returning to the general case, the variance (48) can be estimated from above by means of

(58), (62), and the relations
∑N

n=1 p2
n = trρ2,

∑N

n=1 p3
n ≤ (trρ2)3/2, derived in the Appendix,

as follows

σ 2
A ≤ K(0)�2

A trρ2 + 2K(2)�2
A

(
2[trρ2]3/2 + [trρ2]2

)
. (64)

Our next goal is to find upper and lower bounds for G(x) for x > 0 (x = 0 is trivial) in
order to estimate K(k) from (52). To this end, we consider x > 0 as arbitrary but fixed, and
consider the right hand side in (47) as a function of p := (p1, . . . , pN),

Q(p) :=
N∏

n=1

(1 + xpn)
−1. (65)

The basic idea is to determine its maximum and the minimum under the three constraints
(2), (3), and pn ≤ pmax for all n, where

pmax := max
n

pn. (66)

The differential/variation of (65) reads

δQ(p) := −xQ(p)

N∑

n=1

δpn

1 + xpn

, (67)

complemented by the constraints
∑

δpn = 0, δpn ≥ 0 if pn = 0, and δpn ≤ 0 if pn = pmax.
Observing that xQ(p) > 0 on the right hand side of (67) and that the factors 1/(1 + xpn)

are smaller (but still positive) for large pn than for small pn implies that Q(p) can always
be made larger (δQ(p) > 0) by making the already large pn still larger (δpn > 0) and the
already small pn still smaller (δpn < 0). As a consequence, Q(p) is minimal if all pn are
equal, implying that

G(x) ≥ (1 + x/N)−N. (68)

On the other hand, Q(p) cannot be increased any more if and only if the small pn have
reached the lower limit pn = 0 and the large pn the upper limit pn = pmax. Denoting by
Nmax the number of those pn equal to pmax, their total weight Nmaxpmax is generically still
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not exactly equal to unity for any integer Nmax. Hence there must remain one weight pn with
a value 1 − Nmaxpmax =: p0 ∈ [0,pmax] in order to fulfill the constraint (3). All in all, this
implies the upper bound

G(x) ≤ (1 + xpmax)
−Nmax(1 + xp0)

−1. (69)

Next we note that for any a > 0 the auxiliary function f (y) := ln(1 + ay) − y ln(1 + a)

is zero for y = 0 and y = 1 and has a negative second derivative for y ≥ 0, implying that
f (y) ≥ 0 for all y ∈ [0,1]. Setting a = xpmax and y = p0/pmax it follows that (1+xp0)

pmax ≥
(1 + xpmax)

p0 and due to p0 := 1 − Nmaxpmax that 1 + xp0 ≥ (1 + xpmax)
1/pmax−Nmax . With

(69) we thus can infer that

G(x) ≤ (1 + xpmax)
−1/pmax . (70)

From (3) and (66) we see that

pmax ≥ 1/N. (71)

Further, the upper bound (70) yields finite integrals (52) only if

pmax < 1/3. (72)

Note that this condition implies N > 3 and hence condition (54) is automatically satisfied.
Taking for granted (72) we can infer by exploiting the bounds (68) and (70) in (52) and after
performing k partial integrations that

K(k) =
k+1∏

j=1

1

1 − jp(k)
, k = 0,1,2 (73)

p(k) ∈ [1/N,pmax] (74)

With (64) we thus obtain for the variance the upper bound

σ 2
A ≤ �2

A

(
trρ2

1 − pmax
+ 4[trρ2]3/2 + 2[trρ2]2

(1 − pmax)(1 − 2pmax)(1 − 3pmax)

)
. (75)

6 Discussion of the Main Results

The upper bound (75) for the variance from (33) is the first main result of our paper. In our
derivation we have assumed that 〈A〉 = 0 (see (34)), but since the variance from (33) and also
all the other quantities appearing in (75) remain unchanged upon replacing A by A − 〈A〉
we can conclude that (75) remains valid for arbitrary A. Moreover, we made the assumption
that N < ∞ and pn > 0 for all n in deriving (75). Since neither of the quantities appearing
in the final result (75) give rise to any problem in the limit pn → 0, the assumptions pn > 0
can be given up as well. Finally, the limit N → ∞ depends on the meaning and existence
of this limit for the quantities appearing on the right hand side of (75). In particular after
dividing both sides by �2

A (see below), we expect that in many important cases this limit
will not give rise to any problems. The only remaining condition for (75) to be applicable is
thus pmax < 1/3 (see (72)).
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In the special case of a microcanonical density operator (4) we have obtained as a second
main result the exact relation (63) for the variance under the same assumptions as above,
namely 〈A〉 = 0, N < ∞, and pn > 0 for all n. Accordingly, for more general observables
A with 〈A〉 
= 0 we have to replace A by A − 〈A〉 in (63). Next, if not all pn are positive
and thus equal to 1/N , then we have to replace A by A+ and N by N+, as discussed at the
beginning of Sect. 3. All in all, we thus obtain for a microcanonical density operator (4) the
general exact result

σ 2
A = N+

N+ + 1
tr[ρmic(A+ − 〈A+〉)]2 = 1

N+ + 1

(
trA2+
N+

−
[

trA+
N+

]2
)

, (76)

where A+ is the projection of the original operator A onto the subspace spanned by the basis
vectors |n〉 with non-trivial weights pn > 0, see (20). As before, the meaning and existence
of the limit N → ∞ depends on the behavior of N+, trA+/N+, and trA2+/N+ in this limit,
but is expected not to give rise to any problems in many important cases.

Results similar to (76) have been previously derived in [10], in [11] (see formula (C.17)
therein), and in [18] (see Lemma 3 therein, whose proof is very close in spirit to [1]). The
main difference is that these results only apply to the special case that S = {1, . . . ,N} and
hence N+ = N in (5), implying that ρmic in (4) is proportional to the identity operator, cf.
(19). At first glance, a further difference appears to be that the above mentioned results do
not refer to the GAP measure (22) associated with the above ρmic but rather are derived under
the assumption that all (normalized) pure states |ψ〉 ∈ H are realized with equal probability.
However, by noting that the latter assumption uniquely determines the probability density
p(z) for the coefficients zn in (6) and that the GAP measure does fulfill the assumption (see
below (24)) we can conclude that there is in fact no difference in this respect. As a by product
we can infer that (76) in particular applies to the case that all (normalized) pure states |ψ〉
within the subspace H+ ⊂ H are realized with equal probability and all other |ψ〉 ∈ H are
excluded. After submission of this paper, A. Sugita pointed out that the same finding is also
contained in his recent work [9].

Of particular interest in (75) are situations for which the bracket on the right hand side
becomes a small quantity. Therefore, we now focus on the case that the so-called purity trρ2

of the mixed state ρ is low, i.e.

trρ2 � 1. (77)

We recall the well-known facts that the purity is one if and only if ρ corresponds to a pure
state (ρ = |ψ〉〈ψ | for some |ψ〉 ∈ H), is smaller than unity in any other case, and takes the
minimal possible value 1/N if pn = 1/N for all n in (1). Roughly speaking, a low purity
trρ2 thus means that the mixed state ρ is very ‘far’ from any pure state |ψ〉 ∈ H.

According to the Appendix, the quantity pmax from (66) can be estimated from above and
from below as follows

trρ2 ≤ pmax ≤
√

trρ2. (78)

Hence, assumption (77) is fulfilled if and only if all pn in (1) are small and is tantamount to
the condition

pmax � 1. (79)

Accordingly, there cannot be just a few dominating pn in (1) in the sense that their sum
would already be of the order of unity. In particular, the dimensionality N of the Hilbert
space H must be large according to (71).
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Exploiting (77) and (78) in (75) yields our final main result

σ 2
A ≤ �2

A trρ2(1 +O(
√

trρ2)). (80)

By rewriting (76) in a form analogous to the last expression in (63) one readily sees that the
upper bound (80) is expected to be quite tight in typical cases.

7 Summary and Conclusions

Given any mixed state ρ of low purity (77) there exists at least one probability distribu-
tion p(z) of pure states (6), namely the GAP measure (22), with the following properties:
(i) By randomly sampling pure states |ψ〉 according to this probability distribution, the pre-
set statistical ensemble ρ is reproduced. (ii) Given any observable A, for the overwhelming
majority of pure states |ψ〉 sampled according to p(z) the expectation value 〈ψ |A|ψ〉 de-
viates extremely little from the ensemble averaged expectation value tr(ρA) compared to
the full range �A of a priori possible outcomes of a measurement corresponding to A. The
latter statement can be expressed more rigorously [5] by means of (80) in combination with
Chebyshev’s inequality [20], and it is tacitly assumed that this range �A from (21) is non-
zero and remains bounded even in the case of an infinite dimensional Hilbert space H, as is
the case for any experimentally realistic observable A (see Sect. 3).

On the one hand, in general there are other measures p(z) besides the GAP measure
which also satisfy property (i) above but for which property (ii) may not necessarily remain
true. On the other hand, ρ fixes all observable properties of the system via (15), so that
under typical circumstances any further information regarding p(z) is neither necessary nor
available. Hence, in order to uniquely specify p(z) for a given ρ, one has either to introduce
and justify additional postulates regarding p(z) [1, 2], or to show that many or all of the p(z)
compatible with ρ lead to essentially the same final conclusions (ii) [5], or one has to include
the preparation and equilibration process of the system into the consideration [12, 13]. In our
present work we have focused on the first among those three options.

The justification for selecting the GAP measure has been discussed in detail in [4]. In
particular, it is argued in [4] that this measure arises naturally when considering macroscopic
systems in thermal equilibrium and hence is the most appropriate choice, at least in cases
when ρ is known to be the canonical density matrix. Furthermore, as shown in [4] and
again in Sect. 6, this measure is the unique solution in the case of a microcanonical density
operator (4) under the additional assumption that all (normalized) pure states |ψ〉 ∈ H+ are
equally likely and all other |ψ〉 ∈ H are excluded, where H+ is the sub Hilbert space spanned
by all the eigenvectors |n〉 with pn > 0 in (1), i.e. the quantum mechanical analogue of the
classical energy shell within the standard microcanonical formalism.

In other words, whenever the Hilbert space H of the system contains a subspace H+ ⊂ H
with the property that all |ψ〉 ∈ H+ are realized with equal probability and all other |ψ〉 ∈ H
are excluded then the variance �A, characterizing the dispersion of the random variable
〈ψ |A|ψ〉 (see (33)), is given by the exact relation (76), where N+ is the dimension of H+
and A+ the restriction/projection of A to H+ (see (20)).
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Appendix

By means of (1), the definition of pmax in (66) and the normalization (3) we can conclude
that

trρk+1 =
N∑

n=1

pk+1
n ≤

N∑

n=1

pk
maxpn = pk

max (81)

for any integer k ≥ 0. For the microcanonical density operator (4), the above inequality
becomes an equality, i.e. the lower bound for pmax following from (81) cannot be improved
in general. Likewise, one readily sees that

trρk =
N∑

n=1

pk
n ≥ max

n
pk

n = pk
max. (82)

Here the inequality becomes an equality if pn → 1 for one index n and pm → 0 for all
m 
= n, and hence again no general improvement of the corresponding upper bound for pmax

is possible. In particular, for k = 2 we have p2
max ≤ trρ2 and hence we can conclude that

0 ≤ pk
n ≤ pk

max = (p2
max)

k/2 ≤ (trρ2)k/2 (83)

for any integer k ≥ 1. Finally, this result yields

trρk =
N∑

n=1

pk
n ≤

N∑

n=1

pk−2
max p2

n = pk−2
max trρ2 ≤ (trρ2)(k−2)/2 trρ2 = (trρ2)k/2 (84)

for any integer k ≥ 2.
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